查看 医学伦理学视频教程 施卫星 24学时 浙江大学 《MIT开放式课程:微分方程》(MIT OpenCourseWare,Differential Equations,Spring,2004)Arthur Mattuck教授主讲,2004春季课程[RMVB]-简介及下载-科技,数理化
首页| 如何下载(?) | 网站地图
大学视频教程网logo点击查看更多 大学视频教程
网站地图 | 当前位置: 大学视频教程网科技数理化 → 《MIT开放式课程:微分方程》(MIT OpenCourseWare,Differential Equations,Spring,2004)Arthur Mattuck教授主讲,2004春季课程[RMVB]

《MIT开放式课程:微分方程》(MIT OpenCourseWare,Differential Equations,Spring,2004)Arthur Mattuck教授主讲,2004春季课程[RMVB]

大学视频教程,璇璇视频教程
资料录入:mafia_x

更新时间:2006-01-02 10:42:00

文件大小:2.38 GB

语言要求:

资料类型:

下载方式:电驴(eMule)下载

中文名称:MIT开放式课程:微分方程
英文名称:MIT OpenCourseWare,Differential Equations,Spring,2004
资源类型:RMVB
版本:Arthur Mattuck教授主讲,2004春季课程
发行时间:2004年
地区:美国
语言:英语
简介
本资源已杀毒。
杀毒软件:kaspersky anti-virus personal 5.0.390

共享服务器:Razorback 2.0 ed2k://|server|195.245.244.243|4661|/高id
昵称:[CHN][VeryCD]mafia_x

《MIT开放式课程:微分方程》(MIT OpenCourseWare,Differential Equations,Spring,2004)Arthur Mattuck教授主讲,2004春季课程[RMVB]
本资源转自5qzone,喜欢用bt的请下载种子文件:http://abc.5qzone.net/download.php?id=252161&file=Differential Equations-Arthur Mattuck.torrent&id2=1132963514&action=1

感受与国内不一样的微分方程教学!老师讲课目标很明确,生动,证明推导也是随手拈来,轻松无比.
缺18,34,35节课的录像,这是由于MIT的网站没有提供。

以下转自mit开放式课程网站:
课程特点Highlights of this Course

This course includes 讲义, 作业, problems for group work in recitation, and a full set of lecture videos.
课程简介Course Description

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. Ordinary differential equations (ODE's) deal with functions of one variable, which can often be thought of as time. Topics include: Solution of first-order ODE's by analytical, graphical and numerical methods; Linear ODE's, especially second order with constant coefficients; Undetermined coefficients and variation of parameters; Sinusoidal and exponential signals: oscillations, damping, resonance; Complex numbers and exponentials; Fourier series, periodic solutions; Delta functions, convolution, and Laplace transform methods; Matrix and first order linear systems: eigenvalues and eigenvectors; and Non-linear autonomous systems: critical point analysis and phase plane diagrams.
更详细介绍请参阅:http://www.cocw.net/mit/index.htm
大学视频教程 No Rights Reserved.