查看 过程控制视频教程 32讲 哈工大 《博弈论书籍》(Game Theory)[PDF]-简介及下载-科技,数理化
首页| 如何下载(?) | 网站地图
大学视频教程网logo点击查看更多 大学视频教程
网站地图 | 当前位置: 大学视频教程网科技数理化 → 《博弈论书籍》(Game Theory)[PDF]

《博弈论书籍》(Game Theory)[PDF]

大学视频教程,璇璇视频教程
资料录入:侠小侠

更新时间:2009-06-19 12:16:00

文件大小:295 MB

语言要求:中文

资料类型:电子书

下载方式:电驴(eMule)下载

《博弈论书籍》(Game Theory)[PDF]
About the book:
毫 无例外,所有的生命都是自然选择引起的博弈和演化的结果。博弈由参与人、战略空间、支付和规则构成。在生命的博弈中,生命体是参与人、生命体可继承的特性 提供战略空间、生命体的生或者死是支付,而规则则交由环境来设置。本书所提出的演化博弈理论是理解很多自然之谜的必需工具。这些自然之谜包括共同进化、物 种的形成和灭绝等问题。在达尔文的假设所引出的适应函数(G函数)的基础上,本书发展了演化博弈的数学方法。G函数可以简化符号并且在引起自然选择的达尔 文动态学的发展中扮演了非常重要的角色。自然选择会导致一些特殊的结果,比如进化稳定策略(ESS)。
About the Author
Thomas L. Vincent is Professor Emeritus of Aerospace and Mechanical Engineering at the University of Arizona.His main research interests are in the areas of nonlinear controlsystem design, optimal control and game theory, and evolution andadaptation of biological systems. He has 153 publications including 79journal articles and 8 books.Joel S. Brown is a Professor of Biology at the University of Illinois at Chicago.His main research interests lie in applying concepts from naturalselection to behavioral, population, and community ecology withapplications to conservation biology. Specific interests include theecology of fear that studies the ecological and evolutionaryimplications of the non-lethal effects of predators on prey. He has 102publications, including 88 journal articles.



还有一些比较好的博弈论书籍。第一次发布资源希望能够成功。关于每本书的介绍,用google百度一下就知道了,都是经典!
每天在线时间8:30~00:00



目录

Contents
List of figures page x
Preface xv
1 Understanding natural selection 1
1.1 Natural selection 2
1.2 Genetical approaches to natural selection 7
1.3 Natural selection as an evolutionary game 10
1.4 Road map 21
2 Underlying mathematics and philosophy 26
2.1 Scalars, vectors, and matrices 28
2.2 Dynamical systems 33
2.3 Biological population models 39
2.4 Examples of population models 42
2.5 Classical stability concepts 49
3 The Darwinian game 61
3.1 Classical games 62
3.2 Evolutionary games 72
3.3 Evolution by natural selection 83
4 G-functions for the Darwinian game 88
4.1 How to create a G-function 89
4.2 Types of G-functions 91
4.3 G-functions with scalar strategies 92
4.4 G-functions with vector strategies 93
4.5 G-functions with resources 96
4.6 Multiple G-functions 99
4.7 G-functions in terms of population frequency 103
4.8 Multistage G-functions 106
4.9 Non-equilibrium dynamics 110
5 Darwinian dynamics 112
5.1 Strategy dynamics and the adaptive landscape 113
5.2 The source of new strategies: heritable variation and mutation 116
5.3 Ecological time and evolutionary time 119
5.4 G-functions with scalar strategies 120
5.5 G-functions with vector strategies 131
5.6 G-functions with resources 140
5.7 Multiple G-functions 141
5.8 G-functions in terms of population frequency 143
5.9 Multistage G-functions 144
5.10 Non-equilibrium Darwinian dynamics 145
5.11 Stability conditions for Darwinian dynamics 147
5.12 Variance dynamics 149
6 Evolutionarily stable strategies 151
6.1 Evolution of evolutionary stability 153
6.2 G-functions with scalar strategies 160
6.3 G-functions with vector strategies 168
6.4 G-functions with resources 170
6.5 Multiple G-functions 174
6.6 G-functions in terms of population frequency 180
6.7 Multistage G-functions 183
6.8 Non-equilibrium Darwinian dynamics 188
7 The ESS maximum principle 197
7.1 Maximum principle for G-functions with scalar strategies 198
7.2 Maximum principle for G-functions with vector strategies 205
7.3 Maximum principle for G-functions with resources 211
7.4 Maximum principle for multiple G-functions 213
7.5 Maximum principle for G-functions in terms of population frequency 219
7.6 Maximum principle for multistage G-functions 222
7.7 Maximum principle for non-equilibrium dynamics 225
8 Speciation and extinction 231
8.1 Species concepts 234
8.2 Strategy species concept 236
8.3 Variance dynamics 243
8.4 Mechanisms of speciation 251
8.5 Predator–prey coevolution and community evolution 264
8.6 Wright’s shifting balance theory and frequency-dependent selection 266
8.7 Microevolution and macroevolution 268
8.8 Incumbent replacement 272
8.9 Procession of life 273
9 Matrix games 275
9.1 A maximum principle for the matrix game 277
9.2 The 2 × 2 bi-linear game 284
9.3 Non-linear matrix games 295
10 Evolutionary ecology 304
10.1 Habitat selection 304
10.2 Consumer-resource games 309
10.3 Plant ecology 324
10.4 Foraging games 333
11 Managing evolving systems 343
11.1 Evolutionary response to harvesting 344
11.2 Resource management and conservation 350
11.3 Chemotherapy-driven evolution 359
References 364
Index 377
大学视频教程 No Rights Reserved.