查看 中国地理视频教程 陕西师范大学 《探索碎形的世界》(Exploring The Fractal Universe)[DVDRip]-简介及下载-科技,天文/地球
首页| 如何下载(?) | 网站地图
大学视频教程网logo点击查看更多 大学视频教程
网站地图 | 当前位置: 大学视频教程网科技天文/地球 → 《探索碎形的世界》(Exploring The Fractal Universe)[DVDRip]

《探索碎形的世界》(Exploring The Fractal Universe)[DVDRip]

大学视频教程,璇璇视频教程
资料录入:gconquer

更新时间:2006-07-20 11:10:00

文件大小:347 MB

语言要求:英文

资料类型:视频资料

下载方式:电驴(eMule)下载
不规则几何元素Fractal,是由IBM研究室的数学家曼德布络特(Benoit Mandelbrot, 1924-)提出。其维度并非整数的几何图形,而是在越来越细微的尺度上不断自我重複,是一项研究不规则性的科学。

许多自然界的形体及人体的构造,皆以此「模式」(Pattern)模拟複製。

此项研究发明除了间接影响相关学术,如数学、经济学外,更因为Fractals几何元素的发现,在影像处理及压缩方面的发展有了重大突破,亦即使得多媒体、电脑动画及高画质电视有绝佳的影像呈现,改善过去资料转换成数位画质时必然发生的失真问题,今日流行的MPEG、JPEG等影像处理才得以出现。

2


普通几何学研究的对象,一般都具有整数的维数。比如,零维的点、一维的线、二维的面、三维的立体、乃至四维的时空。最近十几年的,产生了新兴的分形几何学,空间具有不一定是整数的维,而存在一个分数维数,这是几何学的新突破,引起了数学家和自然科学者的极大关注。

分形几何的产生
《探索碎形的世界》(Exploring The Fractal Universe)[DVDRip]
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。适当的放大或缩小几何尺寸,整个结构并不改变。不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。

客观事物有它自己的特征长度,要用恰当的尺度去测量。用尺来测量万里长城,嫌太短;用尺来测量大肠杆菌,又嫌太长。从而产生了特征长度。还有的事物没有特征尺度,就必须同时考虑从小到大的许许多多尺度(或者叫标度),这叫做“无标度性”的问题。

如物理学中的湍流,湍流是自然界中普遍现象,小至静室中缭绕的轻烟,巨至木星大气中的涡流,都是十分紊乱的流体运动。流体宏观运动的能量,经过大、中、小、微等许许多度尺度上的漩涡,最后转化成分子尺度上的热运动,同时涉及大量不同尺度上的运动状态,就要借助“无标度性”解决问题,湍流中高漩涡区域,就需要用分形几何学。

在二十世纪七十年代,法国数学家曼德尔勃罗特在他的着作中探讨了英国的海岸线有多长?这个问题这依赖于测量时所使用的尺度。

如果用公里作测量单位,从几米到几十米的一些曲折会被忽略;改用米来做单位,测得的总长度会增加,但是一些厘米量级以下的就不能反映出来。由于涨潮落潮使海岸线的水陆分界线具有各种层次的不规则性。海岸线在大小两个方向都有自然的限制,取不列颠岛外缘上几个突出的点,用直线把它们连起来,得到海岸线长度的一种下界。使用比这更长的尺度是没有意义的。还有海沙石的最小尺度是原子和分子,使用更小的尺度也是没有意义的。在这两个自然限度之间,存在着可以变化许多个数量级的“无标度”区,长度不是海岸线的定量特征,就要用分维。

数学家寇赫从一个正方形的“岛”出发,始终保持面积不变,把它的“海岸线”变成无限曲线,其长度也不断增加,并趋向于无穷大。以后可以看到,分维才是“寇赫岛”海岸线的确切特征量,即海岸线的分维均介于1到2之间。

这些自然现象,特别是物理现象和分形有着密切的关系,银河系中的若断若续的星体分布,就具有分维的吸引子。多孔介质中的流体运动和它产生的渗流模型,都是分形的研究对象。这些促使数学家进一步的研究,从而产生了分形几何学。

电子计算机图形显示协助了人们推开分形几何的大门。这座具有无穷层次结构的宏伟建筑,每一个角落里都存在无限嵌套的迷宫和回廊,促使数学家和科学家深入研究。

法国数学家曼德尔勃罗特这位计算机和数学兼通的人物,对分形几何产生了重大的推动作用。他在1975、1977和1982年先后用法文和英文出版了三本书,特别是《分形——形、机遇和维数》以及《自然界中的分形几何学》,开创了新的数学分支——分形几何学。

分形几何的内容

分形几何学的基本思想是:客观事物具有自相似的层次结构,局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似性,成为自相似性。例如,一块磁铁中的每一部分都像整体一样具有南北两极,不断分割下去,每一部分都具有和整体磁铁相同的磁场。这种自相似的层次结构,适当的放大或缩小几何尺寸,整个结构不变。

维数是几何对象的一个重要特征量,它是几何对象中一个点的位置所需的独立坐标数目。在欧氏空间中,人们习惯把空间看成三维的,平面或球面看成二维,而把直线或曲线看成一维。也可以稍加推广,认为点是零维的,还可以引入高维空间,对于更抽象或更复杂的对象,只要每个局部可以和欧氏空间对应,也容易确定维数。但通常人们习惯于整数的维数。

分形理论认为维数也可以是分数,这类维数是物理学家在研究混沌吸引子等理论时需要引入的重要概念。为了定量地描述客观事物的“非规则”程度,1919年,数学家从测度的角度引入了维数概念,将维数从整数扩大到分数,从而突破了一般拓扑集维数为整数的界限。

维数和测量有着密切的关系,下面我们举例说明一下分维的概念。

当我们画一根直线,如果我们用 0维的点来量它,其结果为无穷大,因为直线中包含无穷多个点;如果我们用一块平面来量它,其结果是 0,因为直线中不包含平面。那么,用怎样的尺度来量它才会得到有限值哪?看来只有用与其同维数的小线段来量它才会得到有限值,而这里直线的维数为 1(大于0、小于2)。

对于我们上面提到的“寇赫岛”曲线,其整体是一条无限长的线折迭而成,显然,用小直线段量,其结果是无穷大,而用平面量,其结果是 0(此曲线中不包含平面),那么只有找一个与“寇赫岛”曲线维数相同的尺子量它才会得到有限值,而这个维数显然大于 1、小于 2,那么只能是小数了,所以存在分维。经过计算“寇赫岛”曲线的维数是1.2618……。

分形几何学的应用

分形几何学已在自然界与物理学中得到了应用。如在显微镜下观察落入溶液中的一粒花粉,会看见它不间断地作无规则运动(布朗运动),这是花粉在大量液体分子的无规则碰撞(每秒钟多达十亿亿次)下表现的平均行为。布朗粒子的轨迹,由各种尺寸的折线连成。只要有足够的分辨率,就可以发现原以为是直线段的部分,其实由大量更小尺度的折线连成。这是一种处处连续,但又处处无导数的曲线。这种布朗粒子轨迹的分维是 2,大大高于它的拓扑维数 1。

在某些电化学反应中,电极附近成绩的固态物质,以不规则的树枝形状向外增长。受到污染的一些流水中,粘在藻类植物上的颗粒和胶状物,不断因新的沉积而生长,成为带有许多须须毛毛的枝条状,就可以用分维。

自然界中更大的尺度上也存在分形对象。一枝粗乾可以分出不规则的枝杈,每个枝杈继续分为细杈……,至少有十几次分支的层次,可以用分形几何学去测量。

有人研究了某些云彩边界的几何性质,发现存在从 1公里到1000公里的无标度区。小于 1公里的云朵,更受地形概貌影响,大于1000公里时,地球曲率开始起作用。大小两端都受到一定特征尺度的限制,中间有三个数量级的无标度区,这已经足够了。分形存在于这中间区域。

近几年在流体力学不稳定性、光学双稳定器件、化学震荡反映等试验中,都实际测得了混沌吸引子,并从实验数据中计算出它们的分维。学会从实验数据测算分维是最近的一大进展。分形几何学在物理学、生物学上的应用也正在成为有充实内容的研究领域。

3

分形几何与分形艺术

我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。

一、分形几何与分形艺术

什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。

"分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。

用数学方法对放大区域进行着色处理,这些区域就变成一幅幅精美的艺术图案,这些艺术图案人们称之为"分形艺术"。"分形艺术"以一种全新的艺术风格展示给人们,使人们认识到该艺术和传统艺术一样具有和谐、对称等特征的美学标准。这里值得一提的是对称特征,分形的对称性即表现了传统几何的上下、左右及中心对称。同时她的自相似性又揭示了一种新的对称性,即画面的局部与更大范围的局部的对称,或说局部与整体的对称。这种对称不同于欧几里德几何的对称,而是大小比例的对称,即系统中的每一元素都反映和含有整个系统的性质和信息。这一点与上面所讲的例子:"一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息",完全吻合。不管你是从科学的观点看还是从美学的观点看,她都是那么富有哲理,她是科学上的美和美学上的美的有机结合。

二、复平面中的神奇迭代

Mandelbrot集合是Mandelbrot在复平面中对简单的式子 Z <- Z^2 + C 进行迭代产生的图形。虽然式子和迭代运算都很简单,但是产生的图形出现那么丰富多样的形态及精细结构简直令人难以置信以至于不可思议。在传统几何学中难以找到如此简单的规律隐藏着如此复杂而生动的例子。Mandelbrot集合告诉我们自然界中简单的行为可以导致复杂的结果。例如,大型团体操中每个人穿的衣服只有几种颜色中的一种,每个人的动作也只是导演规定的几种之一。但是整体上可以显示出多种多样的复杂形态。

Julia 集合

在复平面上,水平的轴线代表实数,垂直的轴线代表虚数。每个Julia集合(有无限多个点)都决定一个常数C,它是一个复数。现在您在复平面上任意取一个点,其值是复数Z。将其代入下面方程中进行反复迭代运算:



就是说,用旧的Z自乘再加上C后的结果作为新的Z。再把新的Z作为旧的Z,重复运算。 当你不停地做,你将最后得到的Z值有3种可能性:

1、Z值没有界限增加(趋向无穷)
2、Z值衰减(趋向于零)
3、Z值是变化的,即非1或非2

趋向无穷和趋向于零的点叫定常吸引子,很多点在定常吸引子处结束,被定常吸引子所吸引。非趋向无穷和趋向于零的点是"Julia集合"部分,也叫混沌吸引子。

问题是我们怎样才能让计算机知道哪一个点是定常吸引子还是"Julia集合"。一般按下述算法近似计算:

n=0;
while ((n++ < Nmax) && (( Real(Z)^2 + Imag(Z)^2) < Rmax))
{
Z=Z*Z+C;
}

其中:Nmax为最大迭代次数
Rmax为逃离界限

退出while循环有两种情况,第一种情况是:

(Real(Z)^2 + Imag(Z)^2) >= Rmax

属于这种情况的点相当于"1、Z值没有界限增加(趋向无穷)",为定常吸引子,我们把这些区域着成白色。第二种情况是:

n >= Nmax

属于这种情况的点相当于"2、Z 值衰减(趋向于零)"或"3、Z 值是变化的",我们把这些区域着成黑色。黑色区域图形的边界处即为"Julia集合"。"Julia集合"有着极其复杂的形态和精细的结构。

黑白两色的图形艺术感染力不强。要想得到彩色图形,最简单的方法是用迭代返回值n来着颜色。要想获得较好的艺术效果,一般对n做如下处理:

Red = n*Ar+Br;
Grn = n*Ag+Bg;
Blu = n*Ab+Bb;
if ((Red & 0x1FF) > 0xFF) Red = Red ^ 0xFF;
if ((Grn & 0x1FF) > 0xFF) Grn = Grn ^ 0xFF;
if ((Blu & 0x1FF) > 0xFF) Blu = Blu ^ 0xFF;
其中:Ar、Ag、Ab及Br、Bg、Bb为修正量

获得的Red、Grn、Blu为RGB三基色,着色效果为周期变化,具有较强的艺术感染力,而且等位线也蕴藏在周期变化的色彩之中。

你可以想象得出,在屏幕上顺序的试用每个像素点来反复迭代方程要花费很长的时间。一幅 1024x768 屏幕尺寸的画面有786432个点。其中一些点在计算机上要反复迭代方程次数达1000次(取决于Nmax的取值)或更多次才放弃运算。 运算产生一幅Julia集合需要花费很长的时间,有时需要产生一幅做海报用的大图像时,如 10240x7680,要花几天的时间。当然,你使用高速计算机会缩短这个时间。图 4、5、6是三幅Julia集合:

我们人类生活的世界是一个极其复杂的世界,例如,喧闹的都市生活、变幻莫测的股市变化、复杂的生命现象、蜿蜒曲折的海岸线、坑坑洼洼的地面等等,都表现了客观世界特别丰富的现象。基于传统欧几里得几何学的各门自然科学总是把研究对象想象成一个个规则的形体,而我们生活的世界竟如此不规则和支离破碎,与欧几里得几何图形相比,拥有完全不同层次的复杂性。分形几何则提供了一种描述这种不规则复杂现象中的秩序和结构的新方法。

一、分形几何与分形艺术

什么是分形几何?通俗一点说就是研究无限复杂但具有一定意义下的自相似图形和结构的几何学。什么是自相似呢?例如一棵苍天大树与它自身上的树枝及树枝上的枝杈,在形状上没什么大的区别,大树与树枝这种关系在几何形状上称之为自相似关系;我们再拿来一片树叶,仔细观察一下叶脉,它们也具备这种性质;动物也不例外,一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息;还有高山的表面,您无论怎样放大其局部,它都如此粗糙不平等等。这些例子在我们的身边到处可见。分形几何揭示了世界的本质,分形几何是真正描述大自然的几何学。

"分形"一词译于英文Fractal,系分形几何的创始人曼德尔布罗特(B.B.Mandelbrot)于1975年由拉丁语Frangere一词创造而成,词本身具有"破碎"、"不规则"等含义。Mandelbrot研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构(见图1)。Mandelbrot 集合图形的边界处,具有无限复杂和精细的结构。如果计算机的精度是不受限制的话,您可以无限地放大她的边界。图2、图3 就是将图1中两个矩形框区域放大后的图形。当你放大某个区域,它的结构就在变化,展现出新的结构元素。这正如前面提到的"蜿蜒曲折的一段海岸线",无论您怎样放大它的局部,它总是曲折而不光滑,即连续不可微。微积分中抽象出来的光滑曲线在我们的生活中是不存在的。所以说,Mandelbrot集合是向传统几何学的挑战。



图 1 Mandelbrot集合



图 2 Mandelbrot集合局部放大



图 3 Mandelbrot集合局部放大

用数学方法对放大区域进行着色处理,这些区域就变成一幅幅精美的艺术图案,这些艺术图案人们称之为"分形艺术"。"分形艺术"以一种全新的艺术风格展示给人们,使人们认识到该艺术和传统艺术一样具有和谐、对称等特征的美学标准。这里值得一提的是对称特征,分形的对称性即表现了传统几何的上下、左右及中心对称。同时她的自相似性又揭示了一种新的对称性,即画面的局部与更大范围的局部的对称,或说局部与整体的对称。这种对称不同于欧几里德几何的对称,而是大小比例的对称,即系统中的每一元素都反映和含有整个系统的性质和信息。这一点与上面所讲的例子:"一头牛身体中的一个细胞中的基因记录着这头牛的全部生长信息",完全吻合。不管你是从科学的观点看还是从美学的观点看,她都是那么富有哲理,她是科学上的美和美学上的美的有机结合。

二、复平面中的神奇迭代

Mandelbrot集合是Mandelbrot在复平面中对简单的式子 Z <- Z^2 + C 进行迭代产生的图形。虽然式子和迭代运算都很简单,但是产生的图形出现那么丰富多样的形态及精细结构简直令人难以置信以至于不可思议。在传统几何学中难以找到如此简单的规律隐藏着如此复杂而生动的例子。Mandelbrot集合告诉我们自然界中简单的行为可以导致复杂的结果。例如,大型团体操中每个人穿的衣服只有几种颜色中的一种,每个人的动作也只是导演规定的几种之一。但是整体上可以显示出多种多样的复杂形态。

Julia 集合

在复平面上,水平的轴线代表实数,垂直的轴线代表虚数。每个Julia集合(有无限多个点)都决定一个常数C,它是一个复数。现在您在复平面上任意取一个点,其值是复数Z。将其代入下面方程中进行反复迭代运算:



就是说,用旧的Z自乘再加上C后的结果作为新的Z。再把新的Z作为旧的Z,重复运算。 当你不停地做,你将最后得到的Z值有3种可能性:

1、Z值没有界限增加(趋向无穷)
2、Z值衰减(趋向于零)
3、Z值是变化的,即非1或非2

趋向无穷和趋向于零的点叫定常吸引子,很多点在定常吸引子处结束,被定常吸引子所吸引。非趋向无穷和趋向于零的点是"Julia集合"部分,也叫混沌吸引子。

问题是我们怎样才能让计算机知道哪一个点是定常吸引子还是"Julia集合"。一般按下述算法近似计算:

n=0;
while ((n++ < Nmax) && (( Real(Z)^2 + Imag(Z)^2) < Rmax))
{
Z=Z*Z+C;
}

其中:Nmax为最大迭代次数
Rmax为逃离界限

退出while循环有两种情况,第一种情况是:

(Real(Z)^2 + Imag(Z)^2) >= Rmax

属于这种情况的点相当于"1、Z值没有界限增加(趋向无穷)",为定常吸引子,我们把这些区域着成白色。第二种情况是:

n >= Nmax

属于这种情况的点相当于"2、Z 值衰减(趋向于零)"或"3、Z 值是变化的",我们把这些区域着成黑色。黑色区域图形的边界处即为"Julia集合"。"Julia集合"有着极其复杂的形态和精细的结构。

黑白两色的图形艺术感染力不强。要想得到彩色图形,最简单的方法是用迭代返回值n来着颜色。要想获得较好的艺术效果,一般对n做如下处理:

Red = n*Ar+Br;
Grn = n*Ag+Bg;
Blu = n*Ab+Bb;
if ((Red & 0x1FF) > 0xFF) Red = Red ^ 0xFF;
if ((Grn & 0x1FF) > 0xFF) Grn = Grn ^ 0xFF;
if ((Blu & 0x1FF) > 0xFF) Blu = Blu ^ 0xFF;
其中:Ar、Ag、Ab及Br、Bg、Bb为修正量

获得的Red、Grn、Blu为RGB三基色,着色效果为周期变化,具有较强的艺术感染力,而且等位线也蕴藏在周期变化的色彩之中。

你可以想象得出,在屏幕上顺序的试用每个像素点来反复迭代方程要花费很长的时间。一幅 1024x768 屏幕尺寸的画面有786432个点。其中一些点在计算机上要反复迭代方程次数达1000次(取决于Nmax的取值)或更多次才放弃运算。 运算产生一幅Julia集合需要花费很长的时间,有时需要产生一幅做海报用的大图像时,如 10240x7680,要花几天的时间。当然,你使用高速计算机会缩短这个时间。图 4、5、6是三幅Julia集合:



图 4 象尘埃一样的结构



图 5 稳定的固态型



图 6 象树枝状

Mandelbrot 集合

将Mandelbrot集合和Julia集合联系在一起,Julia集合有若乾类型,都包含在Mandelbrot集合之中。Julia集合中的C是一个常量,而Mandelbrot集合的C是由进入迭代前的Z值而定。迭代结果,Z值同样有3种可能性,即:

1、Z值没有界限增加(趋向无穷)
2、Z值衰减(趋向于零)
3、Z值是变化的,即非1或非2

Mandelbrot集合是所有的朱莉娅集合的合并,Mandelbrot集合的某个区域放大后就是这个点的Julia集合。 Mandelbrot集合有着一些很异国情调并且古怪的形状(见图1)。你能不停地永远放大Mandelbrot集合,但是受到计算机精度的限制。

Newton/Nova 分形

Newton奠定了经典力学、光学和微积分学的基础。但是除了创造这些自然科学的基础学科外,他还建立了一些方法,这些方法虽然比不上整个学科那么有名,但已被证明直到今天还是非常有价值的。例如,牛顿建议用一个逼近方法求解一个方程的根。你猜测一个初始点,然后使用函数的一阶导数,用切线逐渐逼近方程的根。如方程 Z^6 + 1 = 0有六个根,用牛顿的方法"猜测"复平面上各点最后趋向方程的那一个根,你就可以得到一个怪异的分形图形。和平常的Julia分形一样,你能永远放大下去,并有自相似性。 牛顿分形图形中的颜色显示每个答案的种类及性质,即迭代到目的地花费的时间,

三、关于分形艺术的争论

把计算机产生的图形看成是艺术,有人可能要提出一些疑问。这些图形可以利用高品质的打印机产生任意多幅同样质量的"原作",从而在商业化的艺术市场上造成混乱,因此她没有收藏价值,没有收藏价值的作品还能算得上是艺术吗?

这是一个十分敏感的问题。早在六十年代初有些数学家和程序设计人员就开始利用计算机及绘图设备从事这方面的工作。但他们大部分人避免将自己的工作与"艺术"一词挂起钩来,以免与艺术界的人们发生冲突。但是有一些人还是挺着腰杆去面对批评,承认计算机是视觉艺术的一种新工具,称他们自己的方法为"计算机艺术"。在批评面前,他们没有受到影响。他们不顾理论界的反对而继续自己的探索。他们积累了大量令人难忘的成果。正因为他们的努力才出现了今天的PhotoShop、Corel DRAW等等着名的软件, 以及各种计算机艺术团体组织。PhotoShop也成了某些美术专业学生的必修课。

当今时代出现的充满科技含量的"分形艺术"又不同于运用PhotoShop从事的计算机艺术创作。 "分形艺术"是纯数学产物,是否能算得上艺术必然会引起新的争论。争论最活跃的问题是:分形图形是纯数学产物能算得上艺术吗?既然学习数学和程序设计就可以从事艺术创作了,学习美术专业还有什么用处呢?

这个问题提的好。从事分形艺术创作的人要研究产生这些图形的数学算法,这些算法产生的图形是无限的。他们没有结束,你永远不能看见它的全部。你不断放大她们的局部,也许你可能正在发现前人没曾见到过的图案。这些图案可能是非常精彩的。她们与现实世界相符合,从浩瀚广阔的宇宙空间到极精致的细节,是完全可以用数学结构来描述的。另一个的问题是颜色,好的颜色选择,就可以得到一幅奇妙的图形。糟糕的选择,你得到的就是垃圾。所以说,创造分形艺术,最好再学一点绘画基础、色彩学等,那将是大有益处。

分形几何冲击着不同的学术领域,她在艺术领域显示出非凡的作用。创作精美的分形艺术是国内外分形艺术家们的人生追求,总有一天分形艺术会登上大雅艺术殿堂。
大学视频教程 No Rights Reserved.